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FOREWORD

This program is conducted by General Dynamics, Fort Worth Division

with George Washington University (Dr. J.N. Yang) and Modern Analysis Inc.

(Dr. M. Shinozuka) as associate investigators. This program is being con-

ducted in three phases with a total duration of fifty (50) months.

This report was prepared under Air Force Contract F33615-77-C-3123,

",Durability Methods Development." The program is sponsored by the Air

Force Flight Dynamics Laboratory, Wright-Patterson Air Force Base, Ohio,

with James L. Rudd as the Air Force Project Engineer. Dr. B.G.W. Yee

of the General Dynamics' Materials Research laboratory is the Program

Manager and Dr. S. D. Manning is the Principal Investigator. This

is Phase I of a three phase program.

This report (Volume IV) presents the accomplishments of the task en-

titled "Initial Quality Representation" of this program. Four other vol-

umes are written to describe the summary of and the progress made in

Phase I. They are:

Volume I - Phase I Summary

Volume II - Durability Analysis: State-of-the-Art Assessment

Volume III- Structural Durability Survey: State-of-the-Art
Assessment

Volume V - Durability Analysis Methodology Development

This report is published only for the exchange and stimulation of

ideas. As such, the views expressed herein are not necessarily those of

the United States Air Force or Air Force Flight Dynamics Laboratory.
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SECTION I

INTRODUCTION

The initial fatigue quality of the durability critical

parts of an aircraft structure is one of the key input

parameters for the durability analysis to be performed in

the present investigation. Indeed, in the present investi-

gation, we consider that either the EIFS (Equivalent Initial

Flaw Size) or TTCI (Time To Crack Initiaion) represents

such an initial quality that controls the durability of air-

craft. A statistical characterization of the EIFS data is

attempted by fitting various probability distribution func-

tions thereto. The EIFS data considered here are from the

"Fastener Hole Quality" program [1] and are listed in

Table 1. These data consist of data sets XQPF, XWPF and

WPF of size 37, 37 and 38, respectively.

To be more specific, these data sets are examined to

see if they fit (a) the distributions of the Johnson family

including the long-normal distribution, (b) the Weibull dis-

tribution, (c) the distributions of the Pearson family,

(d) the asymptotic distributions of largest values and

(e) the TTCI compatible distributions. It is found that,

with respect to the data examined, the Weibull compatible,

log-normal compatible, and second asymptotic distributions

provide the best fit.
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Table 1 Ordered Observations, Their Plotting Positions,

and Some Sample Statistics (EIFS in mils)

TEST SERIES a XQPF TEST SERIES x XWPF TEST SERIES : WPF

NO, EIFS CUM.PROB. NO, EIFS CUMPROB. NO. EIFS CUM.PROB.

1 .026 .0263 1 .093 .0263 1 .140 .0256
2 .031 .0526 2 .145 .0526 2 .236 .0513
3 ,047 .0789 3 .145 .0789 3 .280 ,0769
4 .050 .1053 4 .160 .1053 4 .280 .1026
5 .058 .1316 5 .175 .1316 5 .320 .1282
6 .059 .1579 6 .180 .1579 b .367 .1538
7 ObO .1842 7 .180 .1842 7 .367 .1'795
8 .063 .2105 8 .190 .2105 8 .420 .2051
9 .0f3 .2368 9 .190 .2368 9 .450 .2308

10 .068 .2632 10 .210 .2632 10 .450 .2564
11 .066 .2895 11 .210 o2895 11 .450 .2821
12 .090 .3158 12 .240 e3158 12 .482 .3077
13 .09b .3421 13 .240 .3421 13 .518 .3333
14 .105 .3684 14 .240 o3684 14 .520 .3590
15 .110 .3947 15 .240 .3947 15 .520 .3846
16 .113 .4211 16 .250 .4211 1b .560 .4103
17 .120 .4474 17 .290 .4474 17 .560 ,4359
18 .130 .4737 18 .295 .4737 18 .600 .4615
19 .150 .5000 19 .29! .5000 19 .647 .4872
20 .170 .5263 20 .295 .5263 20 .647 .5128
21 .200 .552b 21 .295 .5526 21 .650 .5385
22 .220 ,5789 22 .330 .5789 22 e698 .5641
23 .270 .6053 23 .330 .6053 23 .698 .5897
24 .300 .631b 24 .330 .6316 24 .698 .6154
25 .536 .6579 25 .420 .6579 25 .698 .6410
26 .53b 6b842 26 .420 .6842 26 e698 .6667
27 ,o1 .7105 27 0420 e7105 27 .b98 .6923
28 .612 ,7368 28 .470 .7368 28 .754 .7179
29 ,650 .7632 29 .470 ,7632 29 .754 .7436
30 1.090 .7895 30 o540 .7895 30 .817 .7692
31 1.090 .8158 31 .612 .8158 31 1.040 .7949
32 1.090 .8421 32 .700 .8421 32 1.140 .8205
33 1.100 .86864 33 .810 .8684 33 1.250 .8462
34 1,140 .8947 34 .810 .8947 34 1.250 .8718
35 1.240 .9211 35 .870 .9211 35 1.490 .8974
3b 3.1000 .9474 36 ,940 .9474 36 1.640 .9231
37 7.700 ,9737 37 1.280 .9737 37 2.730 .9487

38 3.830 .9744

MEANz .6233 MEAN= .3868 MEAN= 7986
AM2= 1.7214 AM2= .0694 AM2= .4660
AM3= 9.8704 AM3= ,0285 AM3= .9179
AM4=6b.o061 AM4= .0241 AM4= 2.6276

S1Dv= 1,3120 STDV= .2634 STDV= .6826
SUH1(01): 4.3101 SURT(61)= 1.5598 SURT(B1)= 2.8860

82=23.1853 82= 5.0060 82=12.1022
B1=19,0982 81= 2,4331 81= 8.3292

2



S-EVCT I 0 N I I

STATISTICAL ANALYSIS PROCEDURES

2.1 Standard Measure of Skewness and Standardized

Measure of Peakedness (Kurtosis) ý2

With respect to a random variable X, write pi! for the i-th moment about

the origin and pi for the i-th moment about the mean;

i E{Xi}' Pi : E{(X - E[XI)'} (1)

The standardized measures of skewness v, land of peakedness 2 are then gi-

ven by

= 2)32 = 24 /( 2 ) (2)

The estimations of the moments can be made on the basis of the observed da-

ta consisting of a sample size n; x1 , x2 , *..., xn In fact, introducing

the sample moments m! and m. as
1 1

n nm! Ix)n ii In - m')i/n (3)m•:( •Xk)/n m. = Z (xk m~i/

k=1 1 k=1 
(

the population moments p! and 11 may be estimated by their corresponding
sample moments m andm and also skewness -respec-

tively by vE 1land b2

VS,= m3 /(vF2) 3  b2 = m4 /(m 2 ) 2  (4)

2.2 Use of the gl-g 2 Plane for the

Selection of Distribution Functions

A large number of distribution functions may be considered for the cur-

rent investigation to characterize the EIFS data. An engineering approach

has been used here to select from these distribution functions only those

3



distributions that have the prospect of passing further tests of goodness-

of-fit, while eliminating those that are obviously incompatible with the

given EIFS data. The approach is to use the ý 1-B2 plane as shown in Fig.

1 [2] where each of these distributions may be identified efther as a

point , curve, or region. Although Fig. I indicates the rela-

tionships between ý 1 and B 2 of some of the better known distribution

functions, they have been established analytically and do not necessarily

indicate the relationships between the estimates bI1 and b 2 of ý 1 and ý 2.

Nevertheless, Fig. 1 and similar figures have been used, whenever appro-

priate, to single out those distribution functions which probably will

fit well to the observed data. This is done by examining whether the

point (bl,b 2) plotted in the ý 1-B2 plane is inside the region (or close

to the point or the curve) associated with the distribution function for

which the goodness-of-fit is to be consi~dere~d,

2.3 Test of Goodness-of-Fit

Although there are a number of possible ways in which a test can be

performed on goodness-of-fit (for example, the X2 test and the Kolmogorov-

Smirnov test), the w2 method [3] is chosen for the present investigation.

Let F(x) = distribution to be tested and Fn (x) = empf'rical distribution

based on a sample of size n, and then form a statistic

nw2 = n f [Fn(x) - F(x)]2dF(xý (5)

This statistic is distribution-free and some of the percentiles of its

asymptotic-*distribution are listed below [3] and are also plotted in Fig.

2.

Table 2 The W2 Test

P~nW2 < al 0.80 0.85 0.90 0.95 0.98 0.99

a 0.241 0.285 0.347 0.461 0.620 0.743

For practical computations, the following simpler form of nw' has been used.

4
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n
nwn = 1/(12n) + 1 [(21 - 1)/(2n) - F(x )] 2

n i=1

n
= 1/(12n) + 1 [(21 - 1)/(2n) -,F(x(i))]2 (6)

1=1

where x(i) (i=1,2,...,n) are the observations arranged in ascending order;

X(1 ) is the smallest, x( 2 ) the second smallest, ... , X(n) the largest.

The preceding table indicates that the proposed distribution should

be rejected if the corresponding nw2 value is larger than 0.461 (0.347)n
for a significance level of 5% (10%).

2.4 Statistics of Observed Data

There are three sets of observed data: (i) XQPF, (ii) XWPF and (iii)

WPF, where X specifies "Load Transfer"; W specifies "Winslow Drilled", P speci-

fies "Proper Technique," F specifies "Fighter Spectrum" and Q specifies

"Quackenbush Drill and Ream." All data values are given in mils (10-3

inch).

The observed data, XQPF, XWPF and WPF are arranged in ascending order
as shown in Table 1 with the cumulative probability or the plotting posi-
tion defined by

F(x (i) = i/(n + 1) (7)

Estimates of some fundamental statistics are also listed in Table 1. Sym-

bols used therein signify the following: MEAN = mi, AM2 = m2 , AM3 = m3 ,
AM4 = m4 , STDV = s (unbiased standard deviation), SQRT(B1) = Al, B2 = b2

and BI = bl.

7



S E CT I ON I I I

FITTING TO THE JOHNSON

DISTRIBUTION FAMILY

3.1 Method of Translation

The Johnson distribution family was derived by Johnson [2] with the

aid of a method of translation which takes advantage of possible transfor-

mations of non-Gaussian random variables into Gaussian (normal) variables.

The method is outlined below.

We say that a random variable X has been transformed to the normality

if a function G(') transforms X into the standardized normal variable Z.

Z = G(X) (8)

with the density function of Z being

fz(z) = *(z) = I/v-' exp(-z 2 /2) (9)

Such a transformation can be performed in two steps. First, we perform a

linear transformation of X into Y such that

Y = (X - C)/X (10)

with X being positive and then transform Y into the standardized normal

variable Z by

Z = G(X) = y + Tjg(Y) (11)

where n is assumed to be positive. The density function of Y can then be

shown to be

fy(y) = ng'(y)fz(y + flg(y))

= ng'(y)/vY2- exp[-{y + ng(y)}2 /2] (12)

where g(y) has been assumed to be a non-decreasing function of y and g'(y)

9



= dg(y)/dy. We note that there are four parameters 6, X, y and n involved

in the transformation Z = G(X).

Since X and Y are linearly related through Eq. 10, it is easy to show

that the density function of X is given by

fx(x) = n/(V2 -X)g'(•-ý) exp[-{y + ng(x-E)}2/21 (13)

The transformation Z = G(X) y + rng(Y) and the relationship between fz(Z)

and fx(x) are schematically illustrated in Fig. 3. Beyond the obvious fact

that the analytical form of g(.) precisely determines the distribution func-

tion of Y when n = 1 and y = 0, we observe from Fig. 3 that the skewness

and the kurtosis of the distribution of Y are greatly influenced by y and

TI respectively.

3.2 The Johnson Distribution Family

Different distribution functions can be generated by using different

functions for g(y). In fact, Johnson [2] proposed three different types

of distribution functions referred to as the Johnson SL9 SB and SU distri-

butions by respectively employing the following three functions for g(y):

(a) g(y) = kn(y) for y > 0 (14)

(b) g(y) = kn(l_-yY) = 2tanh. 1 (2y - 1) for 0 < y < 1 (15)

(c) g(y) = sin h-1 (y) = kn{y + for -- < y < (16)

3.2.1 The Johnson SL Family

The density function of the Johnson SL family can be defined with the

aid of Eqs. 13 and 14 as

fsL(x) = n/[V?-(x - e)] exp{-[y + rnn(xj)]2/2} for x > c

(17)

where

T1 > 0, YII < 0, x > 0, 1 <

10
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Setting

Y* y - fltnX (18)

we can rewrite Eq. 17 in the following form:

fSL(x) = n/[/,2-7T (x - c)] exp{j-½ 2 [y*/n + kn(x - 6)]21

x > C (19)

where

Tj > o , Ix * l < -, 1 1 <

We can recognize Eq. 19 as the three-parameter log-normal distribution. In-

deed, introducing a and p so that

f = 1/a and y* = -p/a (20)

we can derive the familiar form of the three-parameter log-normal density

function:

fsL(x) = 1/[Y'.io-(x - 0)1 exp{-[Zn(x - E) - p]2/1(2a2)} (21)

With the form of the transformation function given in Eq. 14, we can

show that the i-th moment about the origin -p! of variable Y is given as

j(y) = I/(v•) f exp{i(z - y)/T} exp(-z 2 /2)dz

= exp{(i/n) 2 /2 - y(i/n)} (22)

It then follows that 1 (square of skewness) and 82 (peakedness) are given

by

ý1 = (w - 1)(w + 2)2

82 = 3 + (w - 1)(w 3 + 3w2 + 6w + 6)

where w = e- with a indicating the standard deviation of the log-normal

distribution. When this relationship is plotted on the BI-82 plane, we

obtain a curve indicating those values of 1 and 2 that represent the

12



log-normal distribution as shown in Fig. 4,

3.2.2 The Johnson SB Family

On the basis of the function g(.) defined by Eq. 15, we can construct

fsB(x) = 11/42F-/ • {(x - c)(A - x + e)} exp{-[y + nkn( x+-')2121

for <x< c + (24)

where

n > 0, IY1 < -, x > 0, 11< <

The probability distributions with the density function given by Eq. 24 are

said to belong to the Johnson SB family. These distributions involve four

independent parameters and consequently BI and a2 that represent this fam-

ily of distributions can take on those values within the domain designated

by "Johnson SB distribution" in Fig. 4. Indeed, this domain is bound by

the curve representing the log-normal distribution and a straight line a2-
ýI - 1 = 0. Above this straight line is the domain representing those val-

ues of ý1 and ý2 that are not realizable.

It follows from Eq. 12 that the density function of Y = (X - 6)/X is

given by

fYSB(y) = n/[V-y(l - y)] exp{-[y + nkn(l_ y)]'/21

for 0 < y < 1 (25)

It also follows from Eq. 11 that Y is expressed in terms of Z as

Y = {1 + exp[-(Z - y)/n]}1- (26)

Hence, the median value Y of Y is

= (1 + exp(÷y/n)]" 1  (27)

The necessary and sufficient conditions for bimodality irrespective of the

sign of y are

13
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T < 1/v,2, IJy < (l/n)Af - 27 - 2-tanh". 2 2 (28)

3.2.3 The Johnson SU Family

Use of Eq. 16 in Eq. 12 immediately results in the density function

of Y:

f Ysu(Y)= /7(y,2+ 1I) exp{-[fy + TIn(y +/y2 + 1 )]2/2}

for -< y < (29)

Similarly, use of Eq. 16 in Eq. 13 produces the density function of X:

fsu(x) = r/.2{(x - e)2 +

*exp{-[y + nkn{(x - c)/X + .4x - •) 2 /X2 + 11]21

for -= < x < (30)

where

1n > 0, -o < Y < X >O, .- o < E <

The probability distributions having the density function given by Eq. 30

are said to belong to the Johnson SU family. As in the case of the John-

son SB family, the values which I and 2 of the distributions of this

family can take are confined in a domain below the log-normal curve as

designated by "Johnson SU distribution" in the Sl-B 2 plane in Fig. 4.

3.3 Fitting Data to Distributions of the Johnson Family

Observed experimental data can be fitted to the distribution functions

of the' Johnson family by proceeding with the following steps:

(1) Determine which of the three distribution families is to be used.
(2) Estimate the parameters of the selected distribution.

(3) Compute the expected cumulative frequencies of the fitted distri-
bution.

(4) Perform a goodness-of-fit test using the W2 method.

The objective of Step (1) can be accomplished by plotting on the 1-B2

plane the estimates b1 and b2 df a1 and 2 ,respectively,evaluated with the

15



aid of Eq. 4. Observe whether or not the point is in the SB domain,

SU domain, or close to or on the SL curve. It appears, prudent to

assume that the data fit the SB (SU) distributions if the point (bl,b 2 )

falls in the SB (SU) domain, and that the log-normal distribution is a like-

ly candidate if the point falls on or close to the SL curve. Indeed, for

the observed data listed in Table 1, all three points representing (bl,b2 )

for XQPF, XWPF and WPF fall in the SB domain. Therefore, these data are

expected to fit well to the SB distribution. Also, while the three points

are not particularly close to the SL curve, their general proximity

to the curve suggests that reasonable fits may be expected between the da-

ta and the three-parameter log-normal distribution. In fact, the data plot-

ted on the log-normal probability paper (assuming that the minimum flaw

size = 0) in Fig. 5 suggests that a more than satisfactory fit may be ob-

served particularly for XWPF and WPF if the three-parameter log-normal dis-

tribution is used.

For the reasons described above and for a greater familiarity with the

lbg-normal distribution on the part of engineers, the Johnson SL (three-

parameter log-normal) distribution is considered first for the purpose of

fitting the observed data in Table 1. Then, a fitting procedure will be

described for the Johnson SB distribution.

3.3.1 The Johnson SL (Three-Parameter Log-Normal) Distribution

Expressing the log-normal probability density function in the form of

Eq. 21 with paraneters -, a and F, w can establish the parameter estimation

procedure in one of the following manners, depending on whether or not the

location parameter F is known. The number of unknown parameters is equal

t6 two when c is known; otherwise it is equal to three.

(a) When e is assumed to be known

Since £n(X - e) is a normally distributed random variable with mean P
A A

and standard deviation a, the estimates p and a of p anda , respectively, can

be obtained in a manner analogous to that for estimating the parameters of

the normal distribution:

16



'9.9
99.8

Data XQPF 0

I9XWFA

98 WPF@ 0 0

95 @0

A&

-p4"i ,
r_1
-.P4

70

0
o so 0W 60

50

40

40 /
30

U 20g i

10 00

5
0A

2 0

0.05 I 111 11 I lia I I I I a i ll1

0.01 0.1 1.0 10.0

Equivalent Initial Flaw Size x (ills)

Fig. 5 Log-Normal Probability Plots of Data Sets XQPF, XWPF and WPF

17



An
p (1/n) x (31)

i=1

^ n )2n

[ = ~ (xý - p)4}/n]½ 2 [ x* 2 }/n (,)2]½ (32)
i=1 i =1

or

n^[s H (xý )} - - I)]½ /(n an-1 (33)

i=1 1

where xý k=n(xi - e) and s is the unbiased estimate of standard deviation.
I

The estimates of n and y* in Eq. 20 are then obtained as
A A A

T1 = I/a or -n2 = i/s (34)

and

A A A A A

y= _1-1/I or Y* = -P/s (35)

Because of the general theoretical advantage, s in Eq. 33 is used more frequent-
ly than a in Eq. 32 for an estimate of the standard deviation. For a large
value of n, however, there is little difference between these two as Eq. 33

indicates. In the present section, however, both a and s are used for com-

parison.

As is well known, the estimate p in Eq. 31, when realizations xi's are

replaced by corresponding random variables Xi s, becomes an estimator and

will Vary from sample to sample. Therefore, it is standard practice that

the adequacy of p as an estimate for the unknown parameter p is indicated

in terms of the confidence interval given by

PU ^
P= ± (tly,n-l)S//-A (36)

where p and s are obtained from Eqs. 31 and 33, respectively, and tla,n_1

is the two-sided 100(1-a) percentile of the Student's t distribution of (n-I)

degrees-of-freedcm. The quantity (1-a) is referred to as the confidence le-
vel and has the following significance.

18



APIP - (tl.a,n.1)s/v-f< -p < p + (tl.a,n.)s1) } = 1 - a (37)

From the (two-sided) 100(1-a)% confidence Interval of p = E[fn(X - c)]

given in Eq. 36, we can obtain the lower bound XL and upper bound XU of the

corresponding interval for X from

11L = kn(XL - C), 1U = kn(Xu -U ) (38)

as

XL = + exp{P - (t 1.s,n.)s/V_} (39)

XU + exp{m!+ (t1dnn.I)s /in-} (40)

(b) When e is assumed to be unknown

It follows from Eqs. 11, 14, and 18 that

Z = y* + rnn(X - e) (41)

where Z is the standardized normal variable. The three parameters y*, -n

and c in Eq. 41 can be estimated in the following manner as suggested by Hahn

and Shapiro [4]: choose three probability values p, q and r, find A = O(zA)

where 0(') = standardized Gaussian distribution function, with A = p, q and

estimate x such that P{X < •xAI = A, construct three equations of the

form

A A

zA = y* + n2n(xA - •) (A = p, q and r) (42)

A A A

and finally solve Eq. 42 for the estimates y*, n and c. In practice, the

quantity xA defined above is estimated with the aid of the ordered sample

x( 1 ) < x(2) < .... < X(n) where x(i) is the i-th smallest in the sample of

size n with the plotting position i/(l+n). Indeed, if it so happens that

A = i/(l+n) (43)

then

xA x(i) (44)
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while if

i/(1 + n) < A < (1 + i)/(l + n) (45)

then by interpolation

xA = x(i) + {x(i+1) - x(i)}{(l + n)A - i} (46)

In the present study, we choose p = 1-a, q = 0.5 and r = a with a being

i/(l+n) (i=1,2,...,8). Then, it is a relatively simple matter to derive
A A A

the following expressions for y*, ri and e:
AA

y* = Tikn{(1 - e-Z'/J)/(x 0 .5 - x )} (47)

= z'/kn{(xl - x0 .5 )/(x 0 .5 -x )} (48)

S= x0.5 - exp(-y*/n) (49)

Obviously, these values are different for different values of cL. In the
A

analysis that follows later, we use as our estimates those values of y*,

n and c that produce the smallest value of nW2. In Eqs. 47 and 48, z' =

zl- = -za represents the 100 x (1-c)-th percentile of the standardized

Gaussian distribution.

(c) Results of estimation

First, we consider the case where the location parameter 6 is assumed

to be known. In this case, we perform the estimation presuming that c is

a fraction of the smallest observation x(1 ); c = x(1) i/10 (i=0,1,2,...,

9). Using Eqs. 31-35, we then estimate n and y* based on both r and s for

each of these ten different values of c; c = 0, 0.lx(),, ... , O.9xl•..

For each set of T) and y* thus estimated, Eq. 6 is used to evaluate nW2

and-we choose as our best estimate the set of c, r and y* that produce

the smallest value of nwn. Table 3 lists estimated parameters n, (writ-
nnten as ETA 1), y* (GAMMA 1), •2(ETA 2), y* (GAMMA 2) and nw' (NWN2) for

the data XQPF, XWPF and WPF under ten different cases of e; Case 1 for

S= 0, Case 2 for c = 0.1x(j,, ... , Case 10 for E = 0.9x(l). The nw.

values are considerably larger for XQPF than for XWPF and WPF. The nw2

n
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Table 3 Values of n, y and n 2 as Functions

of c (The Johnson SL Distribution)

FOR DATA SERIES XQPF

CASE E ETA) GAMMA1 NWN2 ETA2 GAMMA2 NwN?

1 .0000 .736 1.119 1.630 .726 1.104 1.646
2 .0026 .725 1.120 1.673 .715 1.105 1.690
3 .0052 .714 1.120 1.720 .704 1.105 1.738
4 .0078 .702 1.120 1.771 .692 1.105 1.790
5 .OJ04 .689 1.120 1.828 .680 1.104 1.849
6 .0130 .676 1.118 1.892 .666 1.103 1.914
7 .O15b .b61 1.115 1.965 .652 1.100 1.988
8 .0182 .644 1.110 2,050 .635 1.095 2.075
9 .0208 .623 1.101 2.155 .615 1.086 2.182

10 .0234 .595 1.083 2.300 .587 1.069 2.331

FOR DATA SERIES XWPF

CASE E ETAI GAMMAI NhN2 ETA2 GAMMA2 NVJN2

1 .0000 1.671 1.905 .451 1.648 1.879 .455
2 .0093 1.621 1.904 .471 1.599 1.879 .475
3 .0186 1.569 1.901 .493 1.548 1.876 .497
4 .0279 1.516 1.895 .519 1.495 1.870 .523
5 .0372 1.460 1.886 .548 1.440 1.860 .553
6 .0465 1.402 1.872 .582 1.383 1.846 .587
7 .0558 1.340 1.851 .622 1.321 1.826 .628
8 .0651 1.271 1.822 .673 1.254 1.797 .680
9 .0744 1.191 1.776 .741 1.175 1.751 .748

10 .0837 1.085 1.691 .846 1.070 1.668 .854

FOR DATA SERIES wPF

CASE E ETA1 GAMMAI NWN2 ETA2 GAMMA2 NWN2

1 .0000 1.586 .714 .330 1.565 .704 .333
2 .0140 1.548 .738 .343 1.527 .728 .347
3 .0280 1.507 .761 .358 1.487 .751 .362
q .0420 1.465 .783 .374 1.445 .772 .378
5 .0560 1.420 .802 .393 1.401 .792 .398
6 .0700 1.372 .820 .415 1.354 .809 .421
7 .0840 1.320 .834 .443 1.302 .823 .448
8 .0980 1.260 .844 .477 1.243 .833 .483
9 .1120 1.188 .846 .525 1.172 .835 .532

10 .1260 1.085 .828 .606 1.071 .817 .614
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values for the last two sets are not significantly different. Hence, the

three-parameter log-normal distribution can be used for the XWPF data with

approximately the same level of goodness-of-fit as for the UW data, while at

a considerably less satisfactory level for the XQPF data, a trend that can

easily be observed frcm Fig. 5. Table 3 also shows that within each set of

data, the nw2 values decrease as e decreases thus indicating the choice ofn ^ ,
S= 0 together with the corresponding values of n and y* as statistically

the best. The value of nwn associated with the significance level of 5%n
is 0.461 from Table 2. Therefore, observing from Table 3 that the nw2

nvalues for e = 0 are smaller than 0.461 for XWPF and WPF, we may accept

the hypothesis (with a significance level of 5%) that XWPF and WPF data

have been taken from the three-parameter log-normal populations with C =
A A A

0 and corresponding values of n and y (or n2 and yf). However, we must

reject (with the same level of significance) the hypothesis that XQPF da-

ta have been taken from the three-parameter log-normal populations since

the smallest nimn value associated with c = 0 is in this case larger thann
0.461. It is of interest to note that if the significance level is raised

to 10%, only WPF data will survive the test. These results are summarized

in Table 4.

Figures 6-8 show the values of y4, y*, nI and 2 as functions of the

location parameter e for XQPF, XWPF and WPF data, respectively. We ob-

serve from these figures that the difference between the estimates based
A

on a and s are neglibibly small. Fig. 9 illustrates how the values of
A A A

-l and y4 compare "data set by data set" as functions of c when a is used,

while Fig. 10 illustrates the same when s is used. These two figures al-
A

so show that the values of both n and y* are generally largest for XWPF,

larger for WPF and smallest for XQPF over practically the entire range

of c considered. Table 4 also lists the upper and lower bounds, XU and

XL, corresponding to the confidence bounds -pU and l1L with a confidence

level of 0.9, while Table 5 lists the bounds corresponding to confidence

levels of 0.9, 0.95 and 0.99. Fig. 11 plots the nw2 values as functions
n

of c respectively for XQPF, XWPF and WPF and in essence reiterates the

result of the test of hypothesis mentioned earlier. Note that the nw 2

^ n
values based on a and s are indistinguishable in Fig. 11 for the same
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Table 4 Best Estimates (The Johnson SL Distribution with c = 0)

A A

Data nW2* X X

XQPF 0 .726 1.10 1.65 .163 .294

XWPF 0 1.65 1.88 .455 .281 .364

WPF 0 -1.57 .704 .333 .557 .730

* 5% (10%) significance level = .461 (.347)

** 90% confidence bounds in mils

Table 5 Lower and Upper Bounds XL and XiUn mils Corresponding to

'L and VU for Several Confidence Levels 1-a (When e = 0)

FOR DATA XQPF (N=37)

I-ALPHA XL XU
0.90 .1627 .2938
0.95 .1492 ,3204
0.99 .1260 .3793

FOR DATA XWPF (N=37)

1-ALPHA XL XU
0.90 .2808 .3643
0.95 .2703 .3785
0.99 .2509 .4077

FOR DATA WPF (N=38)

I-ALPHA XL XU
0.90 .5571 .7299
0.95 .5354 .7595
0,99 .4957 .8203
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data sets.

We now turn to the case where c is assumed to be unknown. In this case,

Eqs. 47-49 are used to estimate 6, i and y*. As mentioned earlier, differ-
ent sets of s, n and y* will be obtained depending on the values of a to be

used in Eqs. 47 and 48. In the present study, we choose the following eight

different values for a; a = i/(1+n),(i=1,2,...,8). Making use of either

Eqs. 43 and 44 of Eqs. 45 and 46, the values of x , x la and x0. 5 are eval-

uated and listed in Table 6 for each case of these a values; Case i for a

= i/(l+n). Table 7 lists, for each data set, the estimated parameters nA A

as ETA, y* as GAM, c as E and it further lists the value of nW2 computed
A A An

with the aid of Eq. 6. The values of rI, Y* and e for XQPF, XWPF and WPF

are plotted respectively in Figs. 12-14 as functions of the probability

level a. Fig. 15 plots the value of nw2 for each data set as a function ofn
a and shows that, as in the case of Fig. 11, the values are largest for

XQPF, larger for XWPF and smallest for WPF, again reflecting the degrees of
"goodness-of-fit" observed in Fig. 5. Fig. 15 further shows that the nw2

n
values assume minimum at a = 3/38 = 0.0789 for XQPF, at a 1/38 = 0.0263

A A A

for XWPF and at a = 5/39 = 0.1316. The set of 6, n and y* corresponding

to each of these a values is chosen as the best estimate for the respec-

tive data set. If we use the best estimate of c thus obtained in place of

e in Eqs. 39 and 40, the lower and upper bounds, XL and XU, will result as

listed in Table 8. In evaluating XL and XU from Eqs. 39 and 40, i and s

are needed and they are computed with the aid of Eqs. 31 and 33.

It is concluded from Table 7 and Fig. 15 that with the significance

level of 5% we may accept the hypothesis that the WPF data have been taken

from the three-parameter log-normal population but we must reject the oth-

er two data sets as taken from the three-parameter log-normal populations.
A ~AA

For the WPF data, the best estimates are n = 1.855, y* = 0.624 and c =

-0.067. Incidentally, the WPF data will also pass the hypothesis testing

under the significance level of 10%. These results are summarized in

Table 9.
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Table 6 Values of x.50, x. and xl.-
(The Johnson SL Distribution)

XQPF XWPF wPo

X( .50) ,150 o295 .647

CASE I X( 03) .026 .093 .140
X( .97) 7,700 1.280 3.830

CASE 2 X( .05) o031 .145 o236
X( .95) 3.000 .940 2.730

CASE 3 X( .08) .047 .145 .280
X( .92) 1.240 .870 1,640

CASE 4 X( .11) .050 .160 .280
X( .90) 1.140 0810 1.490

CASE 5 X(.13) .058 .175 .320
X( .87) 1.100 .810 1.250

CASE 6 X( .16) .059 .180 .367
X( .85) 1.090 .700 1.250

CASE 7 X( .18) .060 .180 .367
X( .82) 1.090 .612 1.140

CASE 8 X( .21) .063 .190 o420
X( .79) 1.090 .540 1.040
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Table 7 Values of n, J, c and nf2

(The Johnson-SL Distribution)

DATA XQPF Xk',PF WPF

ETA .472 1.223 1.061
CASE 1 GAM .977 1.676 .537

E .024 .041 .044
N N2 3.098 .719 .465

ETA .510 1.111 1.006
CASE 2 6AM 1.064 1.813 .673

E .026 .100 .135
NYN2 2.898 .838 .517

ETA .59q 1.051 1.433
CASE 3 GAM 1.301 1.676 .775

E .036 .092 .065
NiN2 2.408 .872 .340

ETA .54b .935 1.524
CASE 4 6AM 1.200 1.588 .656

E .039 .112 -. 003
NYNN2 2.600 .999 .322

ETA .479 .768 1.855
CASE 5 6AM 1.095 1.425 .624

L .048 .139 -. 067
NNN2 2.717 1.190 .278

ETA .430 .797 1.330

CASE 6 GAM .986 1.,457 .863
E .049 .134 .124

NAN2 2.940 1.178 .359

ETA .383 .887 1.622
CASE 7 GAM .885 1.519 .703

E .050 .115 -. 001
NAN2 3.299 1.059 .306

ETA .338 .950 1.500

LASE 8 GAM .793 1.609 .932
E .054 .111 .110

NWN2 4.077 .983 .322
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Table 8 Lower and Upper Bounds XL and X U in mils Corresponding to

UL and VU for Several Confidence Levels 1-a (The Johnson

SL Distribution; When e is Assumed to be Unknown)

FOR DATA XQPF (N=37)

I-ALPHA XL XU
0.90 .1655 .2988
0.95 .1526 .3276
0.99 .1314 .3929

FOR DATA XiPF (N:37)

1-ALPHA XL XU
0.90 .2737 .3546
0.95 .2637 .3687
0.99 .2455 .3978

FOR DATA OPF (N=38)

1-ALPHA XL XU
090 .5673 .7425
0.95 .5450 ,7721
0.99 .5039 .8325

Table 9 Best Estimates (The Johnson SL Distribution With Unknown c)

A A

Data n * n 2 * *
___ ___L U

XQPF .599 1.30 .036 2.41 .166 .299

XWPF 1.22 1.68 .041 .719 .274 .355

WPF 1.86 .624 -. 067 .278 .567 .743

• -. 5% (10%) significance level = .461 (.347)

•** 90% confidence bounds
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3.3.2 The Johnson SB DiMstriutn

The Johnson SB variable is limited between the lower bound c and the

upper bound e + A as indicated in Eq. 24. Therefore, the following four

potsibilities arise with respect to the upper and lower bounds: (i) Both

bounds are known, (ii) only the upper bound is known, (iii) only the

lower bound is known and (iv) neither bound is known. In the present

study, we formulate the procedures of parameter estimation assuming that

either case (iii) or case (iv) will prevail, although actual estimations

are performed only for case (iii). It is noted in this connection that

the flaw size can never be negative and therefore the lower bound may be

assumed to be zero, an assumption that generally produces a conservative

result. While such an assumption offers a considerable mathematical con-

venience, there is no definite reason, physically or otherwise, to believe

that the lower bound of the ijitial flaw size distribution must be equal

to zero.

(a) When c is assumed to be known

In this case, we estimate the parameters X, n and y assuming that e =
x(1) , i/10 (i=0,1,...,9) as was done when dealing with the SL distribution.

Following then the same method that produced Eqs. 47-49 from Eq. 42, we ob-

tain the three equations below for the estimates X, n1 and y.

[(x0 5  EM + x - x (x-M - x0. 5 )

AF +x x - E) ( (C + x - x )a
(50)

= (Zl, - z )/ln 1x"'- a) (51)
(x - Me + A -x 0)

Y = l-a' - n kn n (52)
C + A -Xl

where, as before, zA and xA are such that zA = D(A) and P{X <xA} = A with

z(.) denoting the standardized normal distribution function. If a o t',
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these three equations must be solved by trial and error, If, however, we

take an identical value for a and W (a = W'), then Eq. 50 can immediately

be solved for X producing

A = (x0.5 - )X)0 x5 - - 6) + (x 0.5- ))(x1  -

-2(x a )- ON1 )}{(x 0 . 5 - C)2 - N(a - O 1a )

(53)
A A

The estimates rn and y are then given by
A A

2z1/[ /[Zn{(xl -a )(E + x - x U - n{(x + O)(C + x - x1_a)1]

(54)

y = I - i{Yn(x 1 . - Wen(€ + x - X1 a) (55)

We point out again that the estimated values of these parameters depend on

the value of a and that the set of estimated values producing the smallest
nw2 value will be considered as the best estimate.
n

(b) When neither upper nor lower bound is known

It follows from Eqs. 11, 15 and 18 that the Johnson SB variable X and

the standardized normal variable Z are related by

Z = y + n kn{(X - c)/(c + X - X)} (56)

With the aid of zA and XA. we then derive the following four equations
AAs 

A 
Afrom which the estimates 6, X, y and -n can be solved.

A A

zA = Y + 1 2n{(xA - 6)/(e + X - xA) (A=p,q,r and u) (57)

The similarity between Eqs. 56 and 57 and Eqs. 41 and 42 is obvious. As

before, depending on the probability levels p, q, r and u to be used, dif-

ferent sets of estimates will be obtained.

However, we have not pursued this avenue of investigation since the

preliminary result indicated that the fit of the observed data to the SB

distribution with four unknown parameters would probably not be particu-
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larly better, if not worse, than the fit to the same distribution with three

unknown parameters. In this connection, we recall the SL distribution re-

sult where considering c as an unknown does not really improve the goodness-

of-fit.

(c) Confidence Interval

Using the estimated parameters X, y, ri and e (c in case it is assumed

to be known), write the following equation

Z = y + T Pn{(X - 0)/(c + X - X)} (58)

Since Z is the standardized normal variable, the unbiased estimates of its

expected value p and standard deviation a' are respectively given by

n
i = Z zi/n (59)

1=1

n ^
s I [ (zi - p) 2 }/(n - 1)12 (60)

i=1

where

A A n A A A

z= y + T1 x I Pn{(xi - E)/(s + X - xi)} (61)
i=1

The upper bound 1U and the lower bound PL of the confidence interval of p

can then be established on the basis of the Student's t distribution as in the

case of the SL distribution. Indeed, they are also given by Eq. 36. The

corresponding bounds XL and XU are obtained from

A A A AA

XL = e + X exp{(PL - y)/W}/l1 + exp{(PL - y)/nl] (62)

XU = c + X exp{(pU - y)/T}/[1 + exp{(pU - y)/nll (63)

(d) Results of estimation

Dealing with the case where c is assumed to be known, we list in Table

10 the estimated values of X, n and y of the SB distribution. In this table,
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Table 10 Results of Estimation for the Johnson SB

Distribution When c is Assumed to be Known

FOR DATA SERIES XWPF

CASE E ETAI GAMMAI RAM NWN2

1 ,0000 - - .
2 .0093 .. .. -

3 ,0186
U .0279 - ---

S .0372 1.354 4.774 9.009 .664
6 .0465 1.260 3.45a 4.103 .669
7 .0558 1.171 2.703 2.644 .675
8 .0651 1.088 2.182 1.939 .683
9 .0744 1.009 1.791 1.522 .692

10 .0837 .935 1,484 1.244 ,703

FOR DATA SERIES wPF

CASE E ETAI GAMMAI RAM NWN2

1 .0000 1.512 3.568 7.503 .283
2 .0140 1.447 3.143 6.187 .285
3 .0280 1.385 2.787 5.253 .287
4 .0420 1.324 2.484 4.555 .289
5 .0560 1.265 2.221 4.012 .291
6 .0700 1.281 2.832 5.838 .316
7 .0840 1.221 2.480 4.852 .319
8 .0980 1.163 2.185 4.140 .322
9 .1120 1.486 8.033 119.569 .322

10 .1260 1.407 4,907 17.577 .323
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Case i indicates the use of e = x( 1 ) (1-1)/10, and E is written for c,

ETA 1 for n, GAMMA 1 for y, RAM for X and NIW2 for nw2 . As mentioned

earlier, the SB variable is limited between E and F_ + X (X > 0). We

have found, however, that the estimation procedure used here produces
A

negative values for the estimate X depending on the assumed values of 6.

For example, the values of the estimate X have turned out to be nega-

tive for all ten cases of £ with respect to XQPF data and for the first

four cases with respect to XWPF data. If an assumed value of c, say eO'

produces a negative X, we interpret that to be an indication of the un-

acceptability of the SB distribution with c = e0 for the data considered.

Therefore, the results of the estimation for XQPF data have not been

listed in Table 10. Also, the results for the first four cases of 6 val-

ues with respect to XWPF data have been indicated by bars (-).

Based on the nw2 values listed in Table 10, we conclude that the bestn
estimates are obtained from Case 5 for XWPF:

c = 0.0372, A = 9.009, q = 1.354, y = 4.774

and from Case 1 for WPF:

A A A

£= 0.000, X = 7.503, n = 1.512, y = 3.568

A A A

Figures 16 and 17 plot the values of estimates X, n and y as functions
of c, respectively for XWPF and WPF. Fig. 18 plots nw2 values as functions

n
of c for both XWPF and WPF. This figure shows that the SB distribution can

be accepted for WPF data but not for XWPF data if the significance level of
5% is assumed. Table 11 lists the values of XL and XU for XWPF and WPF with

the aid of Eqs. 62 and 63. These results are summarized in Table 12.
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Table 11 Lower and Upper Bounds XL and X in mils Corresponding to

)L and pU for Several Confidence Levels 1-a (The Johnson

SB Distribution;, When e is Assumed to be Known)

FOR DATA XQPF (NP37)

I-ALPHA XL XU
0.90 °9587 1.0314
0.95 .9485 1,0425
0.99 .9289 1,0645

FOR DATA XwPF (N=37)

I-ALPHA XL XU
0.90 5270 .8752
0.95 .4892 ,9429
0.99 .a232 1.0898

FOR DATA wPF (N=38)

I-ALPHA XL XU
0.90 .5613 .9586
0.95 .5189 1.0370
0.99 .455 1.2079

Table 12 Best Estimates (The Johnson SB Distribution)

A A

Data y j 1Y E - 2 * X X

A

XQPF A is negative; unacceptable

XWPF 9.01 1.35 4.77 .0372 .664 .527 .875

WPF 7.50 1.51 3.57 .00 .283 .561 .959

* 5% (10%) significance level .461 (.347)

** 90% confidence bounds
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SECTION IV

F I T T I N G T 0 T H E W E I B U L L

DISTRIBUTION FUNCTION

An attempt is made to fit the data shown in Table 1 to the Weibull dis-

tribution. For the present investigation, we consider the following three-

parameter Weibull distribution.

Fx(x) = 1 - exp{-[(x - E)/Xln} for x > . (64)

where n = shape parameter, X = scale parameter and c = location parameter.

It is often a practice to use the maximum likelihood method to esti-

mate these parameters. Its use for the three-parameter Weibull distribu-

tion, however, not only creates numerical problems requiring possibly high-

ly expensive iterative procedures but also may produce an awkward result in

which the estimated location parameter c is larger than the smallest obser-

vation x(1).

In the present study, therefore, a convenient curve fitting procedure

described below is used in conjunction with the least square method under

the assumption that the location parameter is known.

Transforming Eq. 64 into the form

kn2n{1/(1 - F tx)} = n{kn(x - - ZnX} (65)

and setting

y = tnkn{I/(1 - F_(x)}T

u = kn(x - •) (66)

X* = -nZnX

We can reduce Eq. 64 into

y = nu + X* (67)
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which is a linear relationship between y and u. Using the observations x(i)

and corresponding cumulative probabilities F(x(j)) = i/(1 + n) listed in

Table 1, we can compute ui and yi which are the values of u and y in Eq. 66

with x replaced by x(i). These ui and yi are used to construct the square

error E2 of the form

n
E {yi - (ui + X,} (68)

i=1 ' Ti

The parameter values T1 and X* which produce the least value of E2 are then

chosen as our estimates. Explicit expressions for these estimates can be

obtained by solving the equations aE 2/an = 3E2/DX* = 0 as

n n n n n
n = {n u u u)( X Yi)}/{n Z u" - ( ui) 2} (69)

i= i I i

n n n n n n
.* U{2( . )( yi) -Y(d u)( X u y)}/{n I Hi - ui=1 i=1 i=1 i=1 yi i=l i=1

(70)

The scale parameter X is then estimated from Eq. 66 as

X = exp (-X*/n) (71)

Theresultsof such estimations are presented in Tables 13, 14 and 15

respectively for the samples XQPF, XWPF and WPF. In deriving these results,
we have assumed that the location parameter c = 0, 0.2x(1), 0.4x(I), 0.6x(1)

and 0.8x(1). Figs. 19, 20 and 21 plot yi against ui (although the probabil-

ity and the logarithmic scales are used) respectively for XQPF, XWPF and

WPF. Each data point in these figures represents xi - c along the abscissa

and i/(1 + n) along the ordinate. Therefore, at each probability level

i.(1 + n), we see five points corresponding to five different values of E.

For each assumed value of 6, we evaluate the value of nwn from Eq. 6 using
A A n

the corresponding estimates n and k. In Tables 13, 14,and 15, we also

list the values of least square error as well as the values of nwn. Bothn
of these values decrease as c increases. This suggests that the goodness-

of-fit is more satisfactory if we assume larger c values. However, it is

apparent from Fig. 2 as well as Table 2 that all the Weibull distributions
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Table 13 Statistical Analysis of Data

.QPF for Weibull Distribution.

ANALYSIS OF EQUIVALENT INITIAL FLAW SIZE DISTRIRUTION

IN THE CASE OF WEIRULL DISTRIBUTION

FOR DATA SERIES XQPF

WEIBULL SHAPE .76818F+00

wEIBULL SCALE = .4425bE+O0

WEIBULL LOCATION = O0000E4O0
LEAST SQUARE ERROR ,72664E+O1
GOODNESS-OF-FIT TEST STATISTICS NWN2= ,24760E÷00

WEIBULL SHAPE = .75091E+00
wEIBULL SCALE = 042824E÷00
WEIBULL LOCATION = .92000E-0O
LEAST SQUARE ERROR : ,66314E+O1
GOODNESS-OF-FIT TEST STATISTICS NWN2= .23008E+00

WEIRULL SHAPE = ,73159E+00
WEIBULL SCALE = .41314E+O0
WEIBULL LOCATION = ,1O0OOE-O1
LEAST SQUARE ERROR S ,58844E÷O0
GOODNESS-OF-FIT TEST STATISTICS NWN= ,21037E+O0

WEIBULL SHAPE = .70878E+O0
WEIBULL SCALE = ,39705E+00
WEIBULL LOCATION = .15600E-O1
LEAST SQUARE ERROR .4a9732E+O1
GOODNESS-OF-FIT TEST STATISTICS NWN2= .18742E+O0

U

WEIRULL SHAPE .,67785E+00
WEIBULL SCALE .,37989E+00
WEIBULL LOCATION = .20800E-01
LEAST SQUARE ERROR : *37987F+O1
GOODNESS-OF-FIT TEST STATISTICS NWN2= ,1586qE+O0
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Table 14 Statistical Analysis of Data

XWPF for Welbull Distribution

ANALYSIS OF EQUIVALENT INITIAL FLAW SIZE DISTRIBUTION
IN THE CASE OF WEIBULL DISTRIBUTION

FOR DATA SERIES XwPF

WEIBULL SHAPE = 17920E+01
WEIBULL SCALE = 4a3272E+00
WEIBULL LOCATION = .O0000E+O0
LEAST SQUARE ERRflP = .50286E+01
GOODNESS-OF-FIT TEST STATISTICS NiN2= 2?3084E+O0

WEIBULL SHAPE = .16945E+O0
WEIBULL SCALE = .4OR1E+O0
WEIRULL LOCATION = .18600E-01
LEAST SQUARE ERROR .44i298F+O1
GOODNESS-OF-FIT TEST STATISTICS NWN2= .20895E+O0

WEIBULL SHAPE =.t5p9IE+O1
WEIBULL SCALE = .38653E+00
WEIBULL LOCATION = .372OOE-01
LEAST SQUARE EPPOR : .37610E+01
GOODNESS-OF-FIT TEST STATISTICS NWN2= .18437E+O0

WEIRULL SHAPE = .14695E+01
WEIBULL SCALE = .36297F+00
WEIBULL LOCATION = 55800E-01
LEAST SQUARE ERROR c .30437E+01
GOODNESS-OF-FIT TEST STATISTICS NWN2= 15642E+O0

WEIMULL SHAPE = .13150E+01
WEIRULL SCALE .314009E+O0
WEIBULL LOCATION = 744OOE-01
LEAST SQUARE ERROR = .24880E+01
GOODNESS-OF-FIT TEST STATISTICS NWN2= .12513E+00
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Table 15 Statistical Analysis of Data
WPF for Weibull Distribution

ANALYSIS OF EQUIVALENT INITIAL FLAW SIZE DISTRIBUTION
IN THE CASE OF WEISULL DISTRIBUTION
--.------. o~...m.men-men

FOR DATA SERIES WPF

wEIBtLLL SHAPE a 9169L5E+01
WEIRULL SCALE x .87823E+O0
WEIRULL LOCATION x ,OOOOOE+O0
LEAST SQUARE ERROR = ,57231E+01
GOODNESS-OF-FIT TEST STATISTICS NWN2= .30361E+00

WEIBULL SHAPE x .1620eE+01
WEIBULL SCALE 2 .84345E+00
WEIBULL LOCATION x *28000E-O1
LEAST SQUARE ERROR = .51375E+01
GOODNESS-OF-FIT TEST STATISTICS NWN2= .28299E+00

WEISULL SHAPE = ,15.373E+01
WEIBULL SCALE = .80884E,00
WEIBULL LOCATION = .56000E-O1
LEAST SQUARE ERROR : .456O2E+O1
GOODNESS-OF-FIT TEST STATISTICS NWN2= .26271E+00

WEIBULL SHAPE 2 ,14362E+01
WEIBULL SCALE = .77523E+O0
WEIBULL LOCATION = ,84OOOE-O1
LEAST SQUARE ERROR * ,0O81OE+O1
GOODNESS-OF-FIT TEST STATISTICS NWN2= ,24514E+O0

WEIBULL SHAPE a 12•?23E+O0
WEIBULL SCALE m 74I648E+O0
WEIBULL LOCATION x 911200E+O0
LEAST SQUARE ERROR 4 .L0969E+O!
GOODNESS-OF-FIT TEST STATISTICS NWN2= .24091E+00
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with estimated shape and scale parameter values and with assumed location

parameter values (including those with c = 0) can be accepted as the pop-

ulation distribution if the significance level a (for rejection) is 0.10.

Indeed, all but one (WPF with c = 0) can be accepted even under a = 0.15.

These results are summarized in Table 16.
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Table 16 Best Estimates (The Weibull Distribution)

Data nw n2* E++

.768 .443 .248 7.27 0*
X QPF" .678 .380 .159 3.80 .0208+

1.79 .433 .231 5.03 0*
XW PF____ __1.32 .340 .125 2.49 .0744+

1.69 .878 .304 5.72 0*

WPF
1.29 .746 .241 4.10 .112+

* 5% significance level = .461

10% significance level = .347

** Assumed minimum value of c
+ Assumed maximum value of c

++ Least square error
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SECTION V

FITTING TO THE PEARSON

DI ST RIB UT ION FAMILY

5.1 The Pearson Distribution Family

The probability distribution functions with the following twelve types

of density belong to the Pearson family [5, 6, 7].

Type Density Origin Range

I f(x) = c xP(1 - x/a)q x = 0 0 < x < a (72)

II f(x) = c{1 - (x/a)21P Mean(=Mode) -a < x < a (73)

III f(x) = c xp exp(-x/a) x = 0 0 < x < 0 (74)

IV f(x) = c{1 + (x/a)2}-P Mean < X< 0 (75)
x exp{-b tan- (x/a) + ½2ab/(p-1)

V f(x) = c x-p exp(-a/x) x = 0 0 <x < o (76)

VI f(x) = c xq(1 + x/a)-p x = 0 0 < x < Co (77)

VII f(x) = c{1 + (x/a)21"P Mean(=Mode) -C < x < 00 (78)

VIII f(x) = c(1 + x/a)-P x = 0 -a < x < 0 (79)

IX f(x) = c(1 + x/a)p x = 0 -a < x < 0 (80)

X f(x) = c exp(-x/a) x = 0 0 < x < 00 (81)

Xi f(x) = c x-p x =b b < x < c (82)

C [-'(•+I--_ APT1) +R,'" XV11/3i1

XII f(x) = c - - (/3-+_1 +

-V•-ýI I Mean < x < (83)

a ( 73¥I- ý vqj1)

Each of these distribution functions is identified either as a point,
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a curve (possibly a straight line) or a region in the 1 and 2 plane as

shown in Fig. 22 which is constructed by extending the work presented in

[5, 6, 71. Fig. 22 plots the (bl,b 2 ) points for the data XQPF, XWPF and

WPF and suggests that the Pearson distribution function of Type I is sup-

posed to represent all these data well.

Following the procedures suggested in [5, 6, 7], four parameters c,

a, p and q of Type I written in the form

f(x) = c xP(a - x)q (84)

are estimated as

a = ½(112r 2 )½ (85)

: ½{rf - 2 ý r1(r1 + 2)( 1 /r 2 )2 } (86)
q

c = a-(P+q+l)r(p + q + 2)/{r(p + l)r(q + 1)} (87)

where

r1 = 6( 2 - ý1 - 1)/(6 + 3 1 - 2 2) (88)

r2 = 61 (rI + 2)2 + 16(r 1 + 1) (89)

and 12 ' ý1 and ý2 are given by Eqs. 1 and 2 while r(.) indicates the gamma

function.

5.2 Results of Estimation

The parameters a, p, q and c of the Type I distribution function are

estimated and used in Eq. 84 resulting in the following density functions.

For XQPF, f(x) = 0.0358x-0.956(9.65 - x) 00503 (90)

For XWPF, f(x) = 0.351x- 0 . 5 6 2 (1.44 - x)I'43 (91)

For WPF , f(x) = 0.0187x 0.835(5.07 - x)1.29 (92)
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Unfortunately, the resulting values of nW2 are layge: 6.64 for XQPF, 3.02n
for XWPF and 6.03 for WPF. These large values of n W 2 clearly indicate thatn
the Pearson distribution of Type I cannot apply to either of those data.

These density functions are plotted in Figs. 23-25 together with the cor-

responding normalized histograms for comparison.
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SECTION VI

FITTING TO THE ASYMPTOTIC

DISTRIBUTIONS OF LARGEST VALUES

6.1 Asymptotic Distributions of Largest Values

The following three asymptotic distributions of largest values are

tested for their goodness-of-fit with respect to the observed EIFS data.

(a) The First Asymptote

Fx(x) = e-e -1< x < 0 (93)

where a,(> 0) and 81 are the parameters to be estimated.

(b) The Second Asymptote

Fx(X) = exp[-(x/x 2)'a 1 0 < x (94)

in which a2 (> 0) and x2 (> 0) are the parameters.

(c) The Third Asymptote

Fx(X) = exp [(w X)3] (95)

with the parameters a3 '(> 0), x3 (> 0) and w(> 0).

For each of these asymptotic distribution functions, we can find the

appropriate transformations of the probability scale and of the random var-

iate so that the relationship between the transformed is linear, although

the upper bound w in the case of the third asymptotic distribution must be

known.

6.2 The First Asymptote

Using a procedure similar to that fdri:the'Weibull distribution fit,
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transform Eq. 93 into the form

y = -a 1x - (96)

where

y = knkn{I/Fx(x)} (97)

Using the observations x(i) and the corresponding cumulative probabilities

F(x(i)) = i/(1 + n) as listed in Table 1, we can construct Y(i) from Eq. 97

as

Y(i) = nknn{(l + n)/i} (98)

and construct the square error E2 as

n
E2 = {Y(i) - (-slx(i) - ý1)}2 (99)

i A=1

The parameter values cI and which produce the least value of E2 are cho-

sen as our best estimates. Explicit expressions for these estimates can be

obtained by solving the equations DE2/9a 1 = DE2 /9 1 = 0 and are given by

^ n n n n n

I xiYi -X x xi)( yi)}/{n x- ( x)2i=I il i= i~li=l

(100)
n n n n n n_I {(. M x I) Yi) ( xi) X xi )}/{n xi xi)2}

iii=l il i4l i

(101)

in which xi and yi are written in place of x(i) land Y(i) for simplicity of

notation.

The results of the parameter estimation and test of goodness-of-fit

are summarized in Table 17 which lists the values of the least square E2

and nw' as well asthe best estimates of the'two parameters for the datan
sets XQPF, XWPF and WPF. The results clearly indicate that neither of

the data sets fits to the first asymptotic distribution at the signifi-

cance level of 5% or 10%. Fig. 26 plots these data sets on the Gumbel

probability paper.
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Table 17 Best Estimates (The Asymptotic Distributions)

(a) The First Asymptote

Best Estimates

Data A A n *, "E7+

XQPF .642 .142 1.48 21.3

XWPF .415 -. 106 2.63 3.41

WPF .147 -. 629 .697 10.9

(b) The Second Asymptote

Best Estimates
A A

Data nw 2* E2+
Daa 2 2______ n _____

XQPF .822 .113 .0672 1.44

XWPF 1.87 .240 .0306 1.03

WPF 1.76 .469 .140 2.13

(c) The Third Asymptote

Best Estimates

Dan 2* E2+Data a 3 x 3 wn

(MIL)

XQPF 16.3 30.3 30 1.62 23.0

XWPF 105.4 29.8 30 .370 4.33

WPF 40.0 29.6 30 .779 11.7

* 5% significance level = .461

10% significance level = .347

+ Least square error
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6.3 The Second Asymptote

For the second asymptotic distribution, consider the following trans-

formation of the random variable X into Y

Y = kn X (102)

Then, the distribution function of Y can be written as

Fy(y) = e-e (103)

where

2 = -L2 kn x2  (104)

Analytically, Eq. 103 is identical with Eq. 93 and therefore the same method

of estimation as used for the parameters of the first asymptotic distribu-

tion can be employed in this case as well: Eqs. 100 and 101 can be solved
A AA

for the best estimates a2 and B2 for a2 and ý2 if in these equations a1 and

ý1 are replaced by t2 and 82 and also xi = X(i) by ui = fn xi = Zn x(i).

A A A

Once a2 and ý2 are found, the best estimate x2 for x2 can be evaluated

as
AA

A - Y2/•
x 2 = e (105)

The estimated parameters and the values of the least square E2 and nW2n
are listed in Table 17 which indicates that all the data sets fit extremely

well to the second asymptotic distribution: Observe the very low values of

nw2. Fig. 27 plots these data sets on the Gumbel probability paper.
n

6.4 The Third Asymptote

Using;latransformation similar to Eq. 102;

Y = kn(w - X) (106)

the distribution function of Y can be obtained from Eq. 95 as
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,F (y) = 1 - e-e (107)

where

$3 = -L3 Pn x3 (108)

Transforming Eq. 107 further into the following form

z = a 3y + ý3 (109)

with

z = Pn Pn[1/{1 - Fy(y)}] (110)

we can construct the square error E2 as

n

E= {z(i) - (a 3 Y(i) + 3)} (111)

in which

Z(i) = Pn Pn[(1+n)/(l+n-i)] (112)

and

Y(i) = Pn(w - x(i)) (113)

The best estimates a3 and ý3 respectively for the parameters a3 and 3 can

then be obtained as those values of a 3 and B3 that minimize the square er-

ror E2 in Eq. 111. Hence, these best estimates can again be obtained from
AA

Eqs. 100 and 101 by replacing t.1, ý1, xi and^y1 respectively by -a 3' "3'

Yi =/Y(i) and zi = Z(i). The best estimate x3 of x3 can then be evaluated

as
A A

, _$-3/a3x3 = e (114)

This estimation procedure requires, however, the knowledge of the up-

per bound w. In the present study, we assume that the upper bound is w =

.X (n) 1.2x(n) ... , 3.0X The nw2 values associated with these as-

' 1 n)' 27(n) n
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sumed upper bounds are computed after the corresponding parameter values

are estimated and listed in Table 18. The table indicates that the nw2n
values are smaller as the upper bound w gets larger. Therefore, for the

upper bound w, we assume a crack size of 30 mils, a value to be used in

Section VII as the (smallest visible) crack size at the time of crack in-

itiation. The values of the estimated parameters, nw2 and E2 under the

assumption of w = 30 mils are then listed in Table 17. The table indi-

cates that, for the data sets XQPF and WPF, the nw2 values are smallern

under the assumption of w = 30 mils than those listed in Table 18; this

is consistent with the trend observed in Table 18 that the nW2 values aren
smaller for larger values of w. However, the nwn2 value for the data setn
XWPF under the assumption of w = 30 mils is larger than those associated

with w = 2.3x (n), ., 3.Ox(n) in Table 18 against the trend.

The following conclusions can be drawn from these observations: The

third asymptotic distribution fits to neither of the WQPF and WPF data

sets, whether at the 5% or the 10% significance level. However, the dis-

tribution fits to the XWPF data at the 5% significance level under the

assumption of w = 1.6x (n) v 3 .Ox(n) and w = 30 mils while at the 10% sig-

nificance level under w = 2.7x(n) v 3. Ox(n) . How well the third asympto-

tic distribution fits to the XWPF data under the assumption of w > 3.Ox(n)

still remains to be investigated. No further study has been pursued, in

this respect however, in view of the generally poor degree of goodness-

of-fit exhibited by the distribution for the current data sets.

Figs. 28-30 plot respectively the data sets XQPF, XWPF and WPF on

the probability paper for Fy(y) = 1 - exp[-exp(a 3 y + ý3)] when w = 1.lX(n)

2.Ox(n) and 3 Ox(n). Note that the abscissa of the probability paper

plots kn(w - x).
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Table 18 Values of nw2 as a Function of w (The Third Asymptotic Distribution)

w XQPF XWPF WPF

1.1 x X(n) 2.28 0.813 1.64

1.2 2.14 0.648 1.43

1.3 2.05 0.566 1.31

1.4 1.98 0.516 1.22

1.5 1.93 0.480 1.16

1.6 1.89 0.454 1.11

1.7 1.86 0.434 1.07

1.8 1.83 0.418 1.04

1.9 1.80 0.404 1.01

2.0 1.78 0.393 0.985

2.1 1.77 0.384 0.966

2.2 1.75 0.375 0.948

2.3 1.73 0.368 0.933

2.4 1.72 0.362 0.920

2.5 1.71 0.356 0.908

2.6 1.70 0.352 0.899

2.7 1.69 0.347 0.887

2.8 1.68 0.343 0.879

2.9 1.67 0.339 0.870

3.0 1.67 0.336 0.864

X(n) = 7.70 mils for XQPF, 1.28 mils for XWPF and 3.83 mils for WPF
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SECTION VII

FITTING TO TTCI COMPATIBLE

EIFS DISTRIBUTIONS

7.1 Compatibility Between EIFS and TTCI Distributions

We now follow Shinozuka [8] to demonstrate the existence of compatibil-

ity between the EIFS distribution function Fx(x) and the TTCI distribution

function FT(t). The key to the establishment of such compatibility is the

interpretation that the crack size a0 = a(T) at time T of crack initiation

is specifiable (say, a0 = 0.03") and that the crack size a0 is reached as

a result of crack growth from the initial crack size X = a(O). Assuming

that the crack growth is governed by

da(t)/dt = Q[a(t)]b (115)

and integrating from t = 0 to t = T, we obtain the following relationship

among X = a(O), a0 = a(T) and T.

X = a(O) = ao/(1 + ac cQT)1/c (116)

where c = b-1 > 0. With a0 specified, Eq. 116 provides the transformation

necessary to establish the compatibility. Indeed, we can derive on the

basis of Eq. 116

Fx(x) = 1 - FT{(x-c - a c)/(cQ)} (117)

A number of distribution functions have been used for FT(t). Partic-

ularly notable are the log-normal and Weibull distribution functions. It

is well documented that both of these can usually describe the observed

fatigue data reasonably well, especially in the central range of scattered

fatigue data. They represent, however, widely differing underlying me-

chanical-statistical models: The log-normal distribution implies a fail-

ure rate that increases at first and decreases after reaching a maximum,

while the failure rate associated with the Weibull distribution is a mon-

otonically increasing function with time provided that the shape parameter
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is larger than unity. Since monotonically increasing failure rates are

more amenable to physical interpretation, the Weibull distribution is often

preferred to the log-normal distribution. This preference is sometimes re-

inforced further by the fact that the Weibull distribution has an analyti-

cal form that is mathematically easy to nianipulate.

7.2 Weibull Compatible Distribution

Shinozuka [8] applied Eq. 117 to the two-parameter Weibull (TTCI) dis-

tribution and computed the probability density and distribution functions

under the assumption that Q = 2.0 x 10-8, a0 = 0.04" and c = 4.0. Yang

suggests that the same equation be applied to the three-parameter Weibull

distribution

FT(t) = 1 - exp{-[(t - £)/B]c} t > (118)

in which case, the Weibull compatible distribution is obtained as

x- c - a -c - CQEJ 0
Fx(x) : exp{- 0 x <xU (119)

with

XU = (aoc + cQE)-l/c (120)

In the present investigation, the following values of b and Q are assumed,

based on some experimental evidence.

Table 19 Values of Crack Propagation Parameters

DATA XQPF XWPF WPF

b 1.26 1.26 1.22

Q 2.33 x 10-3 2.33 x 10-3 9.25 x 10-3

Note: c = b - 1
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As in the case of the three-parameter Weibull (EIFS) distribution, the

parameter E is assumed to be known and the shape and scale parameter, a and

6, of the parent Weibull distribution are estimated using the following es-

timation procedure. First, transfer the random variable X = a(O) into

Y = X-c = {a(O)}"c (121)

then the distribution function of Y can be written in the form of a three-

parameter Weibull distribution:

F :(y) = 1- exp(y- ; y =>y (122)

where

y = X C = + cQ• (123)
0

and

6 = cQW (124)

Realizations of X, x( 1 ) < x( 2 ) < ... < X(n), are transformed through Eq.

121 into realizations of Y, Y(n) x(1) > Y(n-1) = x(2) > > Y(1 ) =
Xn). Note that the largest, the second largest, ... of the X sample be-

come respectively the smallest, the second smallest, ... of the Y sample

as shown below:

Observations of EIFS Corresponding Y

Largest a(O)(n) Smallest Y(1 ) = {a(O)n}dc

Second largest a(O)(n1) Second smallest Y(2 ) = {a(O)n-1c

Smallest a(O)( 1 ) Largest Y(n) = {a(O) 1l}c

Defining' Ay as

Ay = (Y(1 ) - aoc)/5 (125)

we assume that the location parameters c of the TTCI (Eq. 118) and y of the
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distribution of Y (Eq. 122) take respectively the following values

. =(j - 1)Ay/(cQ) (j=1,2,...,5) (126)

and
-C

yj = 0 + (j - l)Ay (j=1,2,...,5) (127)

Taking advantage of the same procedure as used in the case of the Weibull

distribution fit, we introduce

z = cv + * (128)

where

z = in kn{1/(1 - Fy(y))} (129)

v = kn (y - y) (130)

and

6* = -f tn 6 (131)

By means of the least square method, we can then evaluate the best estimates
A A A A

a and 6* of a and 6 from Eqs. 69 and 70 by replacing n, X*, u. and yi there
respectively with ci, 6*" v i and z where

vi = kn(Y(i) - y) (132)

and

zi = in kn{(1 + n)/(l + n - i)} (133)

The best estimates B and 6 of ý and 6 can be found respectively from Eqs.

124 and 131:

A A

=6/(CQ) (134)
A _6*Ici
6= e (135)

Table 20 indicates the values of nw2 corresponding to yj (j=1,2,...,5)n
for each of the three data sets. In all cases, they are smaller for smaller
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Table 20 Values of nw as a Function of yj

(Weibull Compatible Distribution)

Data XQPF

A A

yj nw2  a
n

1 2.49 0.869 x 101 2.04 0.133 x 10 0

2 2.70 0.941 x 101-

3 2.91 1.06 x 10-1

4 3.12 1.29 x 10-1

5 3.33 1.89 x 10-1

Data XWPF

A A

yj nwn2  a
J n

1 2.49 0.345 x 10-1 4.89 0.103 x 105 0

2 3.12 0.381 x 10-1

3 3.75 0.449 x 10-1

4 4.39 0.588 x 10-1

5 5.02 0.950 x 10-1

Data WPF

A A

j yj nwn2  a S
j n

1 2.14 1.51 x io-I 4.33 0.155 x 105 0

2 2.38 1.61 x 10-1

3 2.62 1.80 x 10-1

4 2.86 2.18 x 10-1

5 3.10 3.14 x 10-1
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values of y and hence for smaller values of c indicating that the best fit
is obtained when e = 0. (Table 20 shows only the values of cx and B for e

=0).

This implies, by virtue of Eq. 120, that the best fit is observed when

a0 (in this case 0.03") is taken as the upper bound of the distribution of

the initial crack size a(0).

The results of estimation are given in Table 21 where the best estimates

of a and ý and the corresponding values of nwn and c are listed.n

Table 21 Best Estimates (Weibull Compatible EIFS Distribution)
A A

Data 6 Ot nw2

n
XQPF 0 2.04 1.33 x 104  .0869

XWPF 0 4.89 1.03 x 104  .0345

WPF 0 4.33 1.55 x 104  .0151

Extremely small values of nW2 above indicate that the Weibull compatiblen
EIFS distribution fits superbly well to all the data sets.

Figures 31-33 plot zi against vi using the Weibull probability paper

respectively for the data sets XQPF, XWPF and WPF. As in the case of Figs.

19-21, each data point in these figures represents yi - y along the abscis-

sa and i/(l+n) along the ordinate and therefore at each probability level

i/(1+n) we see five points corresponding to five different values of y.

7.3 Log-Normal Compatible Distribution

If the TTCI distribution FT(t) is a log-normal distribution of the form

FT M kn(t -c) - t > (136)
T82
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then, the corresponding EIFS distribution Fx(x) can, by virtue of Eq. 117,

be written as

Fx(X) := 4- zn[(x-c - y)/(cQ)l - x <xU (137)

where y and xU are the quantities defined in Eqs. 123 and 120,respectively.

Performing then the same transformation as shown in Eq. 121, we can derive

the distribution function of Y as

Fy(y) = D[{fn(y - y) - ý}/al] (138)

where

: n(cQ) + (139)

Using the same b and Q values given in Table 19 and following the same

procedure as used in the case of the Weibull compatible distribution, the

parameters E and a are estimated under the assumption that the parameter C
A A A

is known. Once, these estimates E and a are found, the estimate pt of li

can be found from Eq. 139 as

A A

p . E - kn(cQ) (140)

The location parameters c and y are assumed to take exactly the same

values as given in Eqs. 126 and 127. Then, as in the case of the three-

parameter log-normal distribution fit in Section III (see Eqs. 31 and 32),
A A

we evaluate the estimates • and a respectively of • and a using the fol-

lowing expressions:

A n
: (1/n) • y* (141)

1=1

^ n A n A

a (y' - ý) 2 /n] 2 [ * y 2 }/n - ( -)2]½ (142)
1i =I i =1

with

y• =n(Y(i) - y) (143)
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Table 22 indicates the values of nw2 corresponding to yj (j=1,2,...5)
n3

for each of the three data sets. As in the case of the Weibull compatible

distribution, the table indicates that (a) the nW2 values are smaller forn
smaller values of y and hence for smaller values of c, suggesting that the

best fit is obtained when c = 0 and (b) the best fit at c = 0 implies that

the upper bound of the EIFS distribution is a0 (in this case 0.03").

The results of estimation are summarized in Table 23 where the best

estimates of p and a and the corresponding values of nW2 and c are listed.n
This table indicates that the goodness-of-fit is highly acceptable; the

nw2 values are much smaller than 0.347, the value associated with the 10%n
significance level, although the Weibull compatible distribution has re-

sulted in even smaller nw2 values.
n

Figure 34 plots the three data sets on the Gaussian probability paper

after they are transformed into kn(y(i) - y) = Yn(x-) - a0c).

The upper and lower bounds EU and CL of the confidence interval for

the expected value E of kn(Y - y) in Eq. 138 can be written as

U A

= E ± (tla,n.1)s/Vn- (144)

EL
A A

where E = + kn(cQ), tln_1 = two-sided 100(1-ct) percentileofthe Student's

t distribution of (n-1) degrees-of-E-eedcnand s = unbiased standard devia-

tion. The lower bound YL and upper bound YU of the corresponding interval

for Y are then obtained from

EL = kn(YL - Y)' =U = fn(Yu - y) (145)

as
A

Y = y + exp{j - (t 1 ,nl)S/AY} (146)

Y y + exp{E + (tlsn l)S/AY} (147)
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Table 22 Values of nw'n as a Function of

(Log-Normal Compatible Distribution)

Data XQPF'
A

yj nwn 2  E

1 2.49 0.184 9.23 0.55 0

2 2.70 0.191

3 2.91 0.201

4 3.12 0.218

5 3.33 0.256

Data XWPF
AA

yj nwn 2I 0

1 2.49 0.109 9.12 0.23 0

2 3.12 0.121

3 3.75 0.139

4 4.39 0.168

5 5.02 0.224

Data WPF

A A

y. nwn p a

1 2.14 0.181 9.52 0.26 0

2 2.38 0.200

3 2.62 0.229

4 2.86 0.275

5 3.10 0.369
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Table 23 Best Estimates (Log-Normal Compatible Distribution)

AA

Data E a nw2

n

XQPF 0 9.23 0.55 0.184

XWPF 0 9.12 0.23 0.109

WPF 0 9.52 0.26 0.181

Table 24 The Lower and Upper Bounds XL and XU (in mils)

Corresponding to Those PL and pU for Several Confi-

dence Levels 1-ot (Log-Normal Compatible Distribution)

For Data XQPF (N = 37)

1-ALPHA XL XU

0.90 .177 .340

0.95 .161 .373

0.99 .132 .444

For Data XWPF (N = 37)

1-ALPHA XL XU

0.90 .286 .373

0.95 .275 .388

0.99 .254 .417

For Data WPF (N = 38)

1-ALPHA XL XU

0.90 .573 .762

0.95 .549 .794

0.99 .504 .858
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Then, finally, the upper and lower bounds XU and XL of the corresponding

interval for X = a(O) are evaluated as

X = YL1/c, X = Y-1/c (148)

U L XL=U

Table 24 lists these upper and lower bounds for all the data sets at the

90, 95 and 99% confidence levels.
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SECTION VIII

CONCLUSIONS

Distribution functions of the Johnson family, (including log-normal

distribution functions) Pearson family, Weibull, Asymptotic (the First,

Second and Third), and TTCI conpatible EIFS (Weibull and log-normal2

compatible EIFS) have been exxnined by means of the w method for their

acceptability in describing the statistical characteristics of EIFS.

The results are summarized in Table 25 below where "unacceptable",

"marginal", "acceptable" and "highly acceptable" signify the follow-

ing unless other significances are indicated in the notes.

Unacceptable: nwn > 0.461; unacceptable even at the 5% signifi-

cance level

Marginal: 0.461 > nw2 > 0.347; acceptable at the 5% significance
- n

level but unacceptable at the 10% significance level

Acceptable: nwn < 0.347; acceptable at the 10% significance le-

vel.

Highly acceptable: acceptable at the significance level higher

than 20%.

Notes (see Table 25):

1. This is the result when a number of values are assumed for the

location parameter c and corresponding values of two other par-

ameters are estimated. When we treat all three parameters as

unknown and perform parameter estimations, resulting nwn val-n
ues indicate that the Johnson SL distribution is "unacceptable"

for XQPF and XWPF. The distribution is "unacceptable" for WPF,

however, in the sense that the estimated location parameter e

is negative (thus physically unacceptable), although the cor-

responding nW2 value is in the statistically "acceptable" range.

n
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2. This is the result when a number of values are assumed for the

lower bound c of the distribution and corresponding valiues of

the three other parameters are estimated. This distribution

is "unacceptable" for XQPF in the sense that the estimated val-

ues of the upper bound X are negative for all assumed values of

E:.

3. This is the result when the location parameter c is assumed to

be zero. When we assume that e = 0.8x( 1 ), this distribution is

"highly acceptable" for all the data sets.

4. Only Type I has been tested. Other types are eliminated on the

basis of poor comparison between (bl,b 2 ) and (81,2

5. Use of these distributions requires the knowledge of parameters
b

b and Q in the crack growth model da/dt = Qa

Table 25 Summary of Goodness-of-Fit Tests

Data XQPF XWPF WPF Notes

Johnson SL unacceptable marginal acceptable I

Johnson SB unacceptable unacceptable acceptable 2

Weibuil acceptable acceptable acceptable 3

Pearson unacceptable unacceptable unacceptable 4

Asymptote I unacceptable unacceptable unacceptable

Asymptote II highly ac- highly ac- highly ac-
ceptable ceptable ceptable

Asymptote III unacceptable acceptable unacceptable

Weibull highly ac- highly ac- highly ac-
Compatible ceptable ceptable ceptable 5

Log-Normal highly ac- highly ac- highly ac-
Compatible ceptable ceptable ceptable 5
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